Greening the automotive production network in the Great Lakes region of North America: What role for unions?

Jeffrey Carey
Queens’s University
Kingston, Ontario
Canada
carey.j@queensu.ca

John Holmes
Queens’s University
Kingston, Ontario
Canada
holmesj@queensu.ca

CRIMT 2015 International Conference, Montréal, QC May 21-23
Context of Our Paper

- Draws from ongoing research into the regional impact of disruptive technologies associated with the “greening” of the automobile

- Seeks to extend the Global Production Network (GPN) 2.0 perspective by incorporating insights from research in economic and labour geography concerning labour’s role in (re)shaping the space economy

- Empirical focus: historical heartland of the North American automotive industry – the Great Lakes region
“rightly or wrongly, the auto industry has been singled out as a primary “culprit” in climate change debates and politicians have seized on measures affecting this industry as the centre-piece of their climate change proposals.” (Canadian Auto Workers union 2007: 2).
An Industry Facing Technological Disruption

- Increasing regulatory pressure to reduce carbon footprint of individual vehicles
- Disruptive automotive technologies:
 - Alternative propulsion systems
 - New lighter weight materials
 - Vehicle electrification
 - Autonomous car
Disruptive Technological Change

% Impact on Fuel Efficiency

- Engine: 50%
- Auxiliary Units: 5%
- Aerodynamics: 10%
- Transmission/Driveline/Axle: 15%
- Weight: 10%
- Wheel / Tire: 10%
Global industry with global players but complex geography

Design and vehicle development globally integrated - concentrated in a handful of centres, including the Great Lakes region

on vehicle production side, dominant trend is regional integration on a continental scale e.g. 80% of vehicles purchased in NAFTA bloc are built there
Automotive production regions in NAFTA

- Great Lakes
- South-eastern US
- Mexico
Great Lakes automotive region (GLR)

- Very highly integrated US-Canada cross-border production system:
 - defined by significant intra-regional flows of vehicles and components
 - integration driven by trade agreements (e.g., Auto Pact, CUSFTA, NAFTA)
- Challenges:
 - hard hit by Great Recession
 - more recent southward shift in industry towards competing auto production regions in southeast US and Mexico
ShiXs in Vehicle Production Capacity

Midwest
- 2000: 7.8
- 2005: 6.9
- 2010: 4.5
- 2015: 6.8
- 2020: 6.7

Canada
- 2000: 2.9
- 2005: 2.6
- 2010: 2.0
- 2015: 2.2
- 2020: 1.8

Southeast
- 2000: 2.9
- 2005: 3.7
- 2010: 2.3
- 2015: 4.4
- 2020: 4.5

Mexico
- 2000: 1.9
- 2005: 1.6
- 2010: 2.3
- 2015: 3.4
- 2020: 4.4

Detroit 3
- 2000: 6.5
- 2005: 5.7
- 2010: 3.3
- 2015: 5.2
- 2020: 5.1

Non domestic
- 2000: 2.3
- 2005: 1.9
- 2010: 1.3
- 2015: 1.3
- 2020: 0.9
Great Lakes automotive region (GLR)

BUT GLR still the heartland of NA vehicle production accounting for:
- Over 500,000 workers
- 60% of all NA light vehicle production
- 72% of NA vehicle transmission production
- 52% of NA engine production
- 50% of all US and 90% of all Canadian suppliers
- Michigan hosts R&D facilities for 9 of the world’s 10 largest OEMs and 46 of the largest 50 global component suppliers
A transitioning industry

Drivers
- Contribution to climate change
- National energy security concerns
- Manufacturing decline

Primary Actors
- State
- Automotive firms (all tiers)
- Consumers
- Labour

Potential Effects
- Uneven regional growth and decline
- Winners and losers (firms and localities)
- Inter- and intra-regional competition for new tech investment
• Attributed to the Manchester School of Economic Geography
• Study of multi-actor and multi-scalar industry networks
 • Vertical (chain): governance relations between production network actors
 • Horizontal (territorial): regional economic development outcomes
• Regional economic development through strategic coupling (indigenous, functional, structural)
• Coupling, recoupling, decoupling (MacKinnon, 2011)
Coe & Yeung (2015)

Seeks to identify the causal factors underlying regional economic development and decline

- Emphasis placed on regional institutions and firms
- Development as regional firm upgrading (product, process, functional)

A dark side to strategic coupling?
- Implications for labour?
GPN 2.0

Coe & Yeung (2015)
What role for unions?

- Cumbers et al (2009): labour as a passive actor in GPN theory
 - Labour geography - labour’s active role in (re)shaping the space economy
- Labour’s influence in reshaping coupling dynamics?
 - Regional upgrading (Rutherford & Holmes, 2007)
Coupling, recoupling, decoupling in the GLR

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Michigan</th>
<th>Ontario</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Type of region (SOURCE-HOST)</td>
<td>SOURCE</td>
<td>HOST</td>
</tr>
<tr>
<td>(2) Regional assets (GENERIC-SPECIFIC)</td>
<td>SPECIFIC</td>
<td>MORE GENERIC</td>
</tr>
<tr>
<td>(3) Mode of existing coupling (INDIGENOUS, FUNCTIONAL, STRUCTURAL)</td>
<td>INDIGENOUS</td>
<td>FUNCTIONAL/STRUCTURAL</td>
</tr>
<tr>
<td>(4) Degree of existing coupling (LOW-HIGH)</td>
<td>HIGH</td>
<td>HIGH</td>
</tr>
<tr>
<td>(5) Exposure to decoupling (LOW-HIGH)</td>
<td>LOW</td>
<td>HIGHER</td>
</tr>
<tr>
<td>(6) Current degree of recoupling (LOW-HIGH)</td>
<td>MODERATE</td>
<td>LOW</td>
</tr>
</tbody>
</table>
Conclusions & Research Questions

- New path creation in the Southern Ontario automotive production network?
 - Effectiveness of existing regional policies?
 - Influence of labour in regional upgrading?
Jeffrey Carey’s PhD research supported financially by Automotive Partnership Canada (APC) through the Automotive Policy Research Centre at McMaster University, Hamilton, Ontario and the Centre de recherche interuniversitaire sur la mondialisation et le travail (CRIMT) at the Université de Montréal